Octopus Deploy Documentation

Deploy a Java application to Tomcat using Octopus, Jenkins, and Artifactory

In this tutorial, we show you how to build a fully-functional continuous delivery pipeline for a simple Java web application and deploy it to Tomcat. We use Jenkins to build the code and run tests, and we use Octopus Deploy to deploy and promote releases.

To get up and running quickly, the TestDrive VMs provide preconfigured environments demonstrating various continuous delivery pipelines documented in these guides.

Video walkthrough

Introduction

The application we'll deploy is called Random Quotes, which is a simple web application that randomly displays a famous quote each time the page loads. It consists of a web front end and a database that contains the quotes. We'll build a complete Continuous Integration/Continuous Delivery (CI/CD) pipeline with automated builds, deployments to a dev environment, and sign offs for production deployments.

Deployment pipeline

For this tutorial, we assume you use Git for version controlling changes to your source code and Jenkins to compile code and run unit tests. Octopus Deploy will take care of the deployment. Here is what the full continuous integration and delivery pipeline will look like when we are finished:

Git C# C# C# TeamCity Artifactory create release DEV TEST PRODUCTION Release 1.1

The development team's workflow is:

  1. Developers commit code changes to Git.
  2. Jenkins detects the change and performs the continuous integration build, this includes resolving any dependencies and running unit tests.
  3. When the Jenkins build completes, the change will be deployed to the Dev environment.
  4. When one of your team members (perhaps a tester) wants to see what's in a particular release, they can use Octopus to manually deploy a release to the Test environment.
  5. When the team is satisfied with the quality of the release and they are ready for it to go to production, they use Octopus to promote the release from the Test environment to the Production environment.

Since Octopus is designed to be used by teams, in this tutorial we also set up some simple rules:

  • Anyone can deploy to the dev or test environments.
  • Only specific people can deploy to production.
  • Production deployments require sign off from someone in our project stakeholders group.
  • We'll send an email to the team after any test or production deployment has succeeded or failed.

This tutorial makes use of the following tools:

Octopus is an extremely powerful deployment automation tool, and there are numerous ways to model a development team's workflow in Octopus Deploy, but this tends to be the most common for small teams. If you're not sure how to configure Octopus, we recommend following this guide to learn the basics. You'll then know how to adjust Octopus to suit your team's workflow.

This tutorial takes about an hour to complete. That sounds like a long time, but keep in mind, at the end of the tutorial, you'll have a fully-functional CI/CD environment for your entire team, and you'll be ready to deploy to production at the click of a button. It's worth the effort!

Build vs. deployment

For any non-trivial application, you're going to deploy the software to multiple environments. For this tutorial, we're using the environments Dev, Test, and Prod. This means you need to choose between building your application once or building it before each deployment? To reduce the risk of a failed production deployment, Octopus strongly encourages the practice of building once, and deploying multiple times.

The following activities are a build time concern, so they will happen in Jenkins after any change to code is committed to Git:

  1. Check out the latest changes from Git.
  2. Resolve and install any dependencies from Maven.
  3. Run unit tests.
  4. Package the application by bundling all the files it needs to run into a WAR file.

This results in a green CI build and a file that contains the application and everything it needs to run. Any configuration files will have their default values, but they won't know anything about dev vs. production settings just yet.

Lastly, it's very important that we give this artifact a unique version number. We will produce a new artifact file every time our CI build runs, and we don't want to accidentally deploy a previous version of the artifact.

An example of a package that is ready to be deployed is:

randomquotes.1.0.0.war

At this point, we have a single artifact that contains all the files our application needs to run, ready to be deployed. We can deploy it over and over, using the same artifact in each environment. If we deploy a bad release, we can go and find the older version of the artifact and re-deploy it.

The following activities happen at deployment time by Octopus Deploy:

  1. Changing any configuration files to include settings appropriate for the environment, e.g., database connection strings, API keys, etc.
  2. Running tasks that need to be performed during the deployment such as database migrations or taking the application temporarily offline.

Prerequisites

There are a number of tools you need to install to implement a complete CI/CD workflow. These include the Jenkins and Octopus servers, some command-line tools, and Tomcat to host the final deployment.

Git

The source code for the sample application is hosted on GitHub. To access the code, you need the Git client. The Git documentation has instructions to download and install the Git client.

Jenkins

Jenkins can be freely downloaded from the project's download page. Native builds are available for Windows, macOS, and various Linux distributions.

Docker images are also available from Docker Hub.

This guide makes use of the Credentials, Credentials Binding, and Plain Credentials plugins.

Octopus CLI

Jenkins calls the Octopus CLI tool to create and deploy releases in the Octopus Server. The Octopus CLI can be downloaded from the Octopus downloads page or installed from Chocolatey.

The Octopus CLI tool must be installed on the Jenkins server or any agents that will execute the Jenkins project.

Java

The Java Developer Kit (JDK) is required to be installed to build and test Java applications. OpenJDK builds are freely available for all platforms.

Maven

The Java application is built using Maven. Maven is available via Chocolatey for Windows, and it can be installed via the appropriate package manager for Linux.

Artifactory

This guide uses Artifactory as an external package repository. A trial version of Artifactory can be downloaded from the project's website.

Getting Started with Octopus Cloud

Before you can start an Octopus Cloud trial, you'll need an Octopus account.

You can sign up for an account at: account.octopus.com/register.

Create an Octopus Account

An Octopus account lets you manage your instances of Octopus Cloud.

  1. Enter your name.
  2. Provide your email address and click Create a password. Please note, these credentials are for your Octopus Account. You will also create credentials for your Octopus Cloud instance, when you create it.
  3. On the next screen, provide your company name.
  4. Chose a secure password and enter it twice.
  5. Click Create my Octopus account.

Create a Cloud Instance

  1. From the instances screen, click Create cloud instance.
  2. Enter an instance name for your Octopus Cloud instance.
  3. Choose a URL for the instance.
  4. Select the Cloud region for your instance. Currently the only option is US - Oregon.
  5. Click Enter account details.
  6. Create your first user for Octopus Cloud.
  7. Enter the username the user will use to log into Octopus Cloud.
  8. Create a password for the user and confirm the password.
  9. Click Continue to Confirmation.
  10. Confirm the details you've provided, agree to the terms, and click Looks good. Deploy my Octopus!.

You will be taken to the account provisioning screen. Please note it can take five to ten minutes for your Octopus Cloud instance to be ready. You will receive an email when the instance is ready to use.

When the instance is ready, you will see it (and any other instances you have access to) the next time you log in to your Octopus account at https://account.octopus.com/account/signin.

Tomcat

Tomcat is an open source Java application server. It can be downloaded from the product homepage, installed via Chocolatey, or installed via a Linux package manager.

Deployments to Tomcat are done via the Manager. This application is included in some Tomcat distributions, but may need to be installed separately. For example, Ubuntu distributes Tomcat and the Manager application as the tomcat9 and tomcat9-admin packages.

A user account must be added to the Manager application to allow deployments to be performed. The following is an example of a tomcat-users.xml file that defines a user called tomcat that belongs to the roles manager-script, which allows access to the Manager REST API, and manager-gui, which allows access to the Manager web interface:

<?xml version="1.0" encoding="UTF-8"?>
 <tomcat-users xmlns="http://tomcat.apache.org/xml"
               xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
               xsi:schemaLocation="http://tomcat.apache.org/xml tomcat-users.xsd"
     <role rolename="manager-script"/>
     <role rolename="manager-gui"/>
     <user username="tomcat" password="Password01!" roles="manager-script,manager-gui"/>
 </tomcat-users>

The sample application we will deploy in this guide has a template configuration file called deployed-application.yml. This configuration file is processed by Octopus during deployment and is read by the application by setting the SPRING_CONFIG_NAME environment variable on the Tomcat server to deployed-application. In this way, a generic configuration file is used for deployments to shared infrastructure, while the default application.yml file is used during local development. See the Spring documentation for more details on Spring properties files.

Clone source code

The source code for the random quotes application is hosted in GitHub. The code can be cloned from https://github.com/OctopusSamples/RandomQuotes-Java.git with the command:

git clone https://github.com/OctopusSamples/RandomQuotes-Java.git

Octopus API key

In order to allow Jenkins to communicate with Octopus, we need to generate an API key. This is done in the Octopus web portal. The web portal can be opened from the Browse link in the Octopus Manager:

From the Octopus Deploy web portal, sign in, and view your profile:

Go to the API keys tab. This lists any previous API keys that you have created. Click on New API key:

Give the API key a name so that you remember what the key is for, and click Generate New:

Copy the new API key to your clipboard:

Continuous integration

Jenkins is a free and open source continuous integration server. In this tutorial, we rely on Jenkins to do the following:

  • Clone the code from Git.
  • Resolve and install any dependencies from Maven.
  • Run unit tests.
  • Package the application by bundling all the files it needs to run into a WAR file.
  • Push the package to the Artifactory package repository.

Install the Octopus plugin

Jenkins pushes artifacts to Octopus and creates and deploys releases via the Octopus plugin. To install the plugin click Manage Jenkins:

Click Manage Plugins:

Click the Available tab, enter Octopus in the search box, select the Octopus Deploy plugin, and click Install without restart:

Wait while the plugin is installed, and click Go back to the top page when the installation is complete:

Configure the Octopus plugin

To use the Octopus steps we first need to configure the Octopus server details. Click Manage Jenkins:

Click Configure System:

Define the Server ID as Local, enter the URL and API Key, and click Save:

Configure the Octopus CLI

The Octopus plugin makes use of the Octopus CLI to execute steps. The path to the CLI must be configured. Click Manage Jenkins:

Click Global Tool Configuration:

Configure the Path to the Octopus CLI, and click Save:

Create the Jenkins project

We are now ready to create a project to build and test the sample application.

Click New Item:

Enter Random Quotes as the project name, select the Freestyle project option, and click OK:

From the Source Code Management section, select the Git option, and enter https://github.com/OctopusSamples/RandomQuotes-Java.git:

In order to watch for changes to the source code, we need to poll the Git repository. From the Build Triggers section, select the Poll SCM option, and enter H/5 * * * * for the schedule. This instructs Jenkins to poll the Git repository every 5 minutes looking for changes to the code:

From the Build section, select the Invoke top-level Maven targets option:

Enter versions:set -DnewVersion=1.0.$BUILD_NUMBER in the Goals field. This will set the version of any resulting builds to match the Jenkins build number.

From the Build section, select the Invoke top-level Maven targets option:

Enter clean test package deploy -Pwar -s path/to/settings.xml in the Goals field, and click Save. This will run the unit tests and package the WAR file if they succeed. It will then push the package to the Artifactory Maven repository.

The -Pwar option uses the war Maven profile, which has been configured in the Random Quotes application to produce a WAR file instead of the default JAR file.

The deploy goal will instruct Maven to push the resulting WAR file to the repository defined in the pom.xml file:

<distributionManagement>
     <repository>
         <id>artifactory</id>
         <name>Artifactory</name>
         <url>http://localhost:8041/artifactory/Maven</url>
     </repository>
     <snapshotRepository>
         <id>artifactorysnapshots</id>
         <name>Artifactory-Snapshots</name>
         <url>http://localhost:8041/artifactory/Maven</url>
     </snapshotRepository>
 </distributionManagement>

The -s path/to/settings.xml option references a settings file that contains the credentials for the Maven repository, hosted by Artifactory:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd">
   <servers>
       <server>
         <id>artifactory</id>
         <username>admin</username>
         <password>password</password>
       </server>
       <server>
         <id>artifactorysnapshots</id>
         <username>admin</username>
         <password>password</password>
       </server>
     </servers>
 </settings>

Build the project

Our project is now ready to build the sample application.

Click the Build Now link. The first build will commence. Click the #1 link to view the build:

Click the Console Output link to view the build output:

The build logs are streamed to the browser. In a minute or so, the build will complete, and the resulting package will have been uploaded to Octopus. Congratulations! You have completed the first half of the CI/CD pipeline.

Deploying with Octopus Deploy

Now that Jenkins has successfully built the application, we need to configure Octopus to deploy it into our environments.

Create the External Feed

We need to add an external feed to reference the Artifactory NuGet repository that Jenkins pushed the package to.

Click the Library link:

Click the External Feeds link:

Click ADD FEED:

Select Maven Feed as the Feed type.

Enter Artifactory as the Feed name.

Enter the URL to the feed. We have a local instance of Artifactory listening on port 8081 with a repository called Maven, so the URL is http://artifactory:8081/artifactory/Maven.

Enter the feed credentials and click SAVE:

Create the environments

Environments represent the stages that a deployment must move through as part of the deployment pipeline. We'll create three environments: Dev, Test, and Prod.

Log into Octopus, and click the Infrastructure link, then the Environments link, and click ADD ENVIRONMENT:

Enter Dev as the New environment name, and click SAVE:

Repeat the process for the Test and Prod environments:

Create the Octopus deployment project

With the environments defined and a target created, we now need to create a deployment project in Octopus.

Log into Octopus, click the Projects link, and click ADD PROJECT:

Enter Random Quotes for the project name, and click SAVE:

We will now define the deployment process. Click the Deployments link, click Overview, and then click DEFINE YOUR DEPLOYMENT PROCESS:

Click ADD STEP:

Enter Tomcat into the search box:

Click ADD on the Deploy to Tomcat via Manager tile:

We want to take advantage of a feature in Octopus that will replace the templates in the deployed-application.yml file, which will set the Spring profile to the name of the environment that is being deployed to. To do this, we enable a feature on the deployment.

Click CONFIGURATION FEATURES:

Enable the Substitute Variables in Templates option, and click OK:

Enter Deploy to Tomcat as the Step Name:

Enter web as the Role:

Select the Artifactory feed:

Select the com.octopus:randomquotes package:

Enter the path to the Tomcat Manager application. The URL will be something like http://localhost:9091/manager.

Provide the credentials for the user account that has been assigned the manager-script role in the tomcat-users.xml file. See the Prerequisites for more details.

Enter randomquotes-#{Octopus.Environment.Name | ToLower} as the Context path. This ensures that the application is deployed to a unique path for every environment. This is how we can use a single Tomcat server to host multiple environments:

In the Substitute Variables in Templates section, enter **/deployed-application.yml as the Target files value. If you recall from the Prerequisites this configuration file (as opposed to the default configuration file of application.yml) is read by the application because the SPRING_CONFIG_NAME environment variable on the Tomcat server was set to deployed-application. Click Save:

The slash in the filename is operating system specific. The pattern **/deployed-application.yml (with a forward slash) is for Linux targets, while **\deployed-application.yml (with a backslash) is for Windows targets.

The contents of the deployed-application.yml file is shown below. Note how it sets the Spring profile name to the name of the Octopus environment being deployed to:

spring:
  profiles:
    active: "#{Octopus.Environment.Name}"

  h2:
    console:
      enabled: true
  jpa:
    database-platform: org.hibernate.dialect.H2Dialect
  datasource:
    url: jdbc:h2:mem:testdb
    dbcp2:
      driver-class-name: org.h2.Driver
  flyway:
    locations: classpath:db/migration/{vendor}

Deploy!

Now we have a deployment project in Octopus ready to deploy our Java application to our Dev, Test, and Prod environments. The next step is to create and deploy a release.

Click CREATE RELEASE.

The release creation screen provides an opportunity to review the packages that will be included and to add any release notes. By default, the latest package is selected automatically. Click SAVE:

This screen allows you to select the environment that will be deployed into. Lifecycles can be used to customize the progression of deployments through environments (this is demonstrated later in the guide), however, we will accept the default option to deploy to the Dev environment by clicking DEPLOY TO DEV...:

Click DEPLOY to deploy the application into the Dev environment:

The application is then deployed:

Congratulations! You have now built and deployed your first application. Visit http://localhost:9091/randomquotes-dev in a browser (replacing localhost:9091 with the IP address and port of your Tomcat instance) to view a random quote. Note the context path matches the templated value of the context path that we deployed the application to. Ensuring each environment deploys to a unique context path is how we can use a single Tomcat instance to host multiple environments:

Continuous deployments

The process of deploying a successful build to the Dev environment is currently a manual one; Jenkins pushes the file to Octopus, and we must trigger the initial deployment to the Dev environment from within Octopus. Typically though, deployments to the Dev environment will be performed automatically if a build and all of its tests succeed.

To trigger the initial deployment to the Dev environment after a successful build, we will go back to the project we created in Jenkins and add an additional step to create an Octopus release and then deploy it to the Dev environment.

Add a create and deploy release step

As before, we make use of the Octopus plugin to interact with the Octopus server. In this case, we use the plugin to create and deploy a release in Octopus after the package has been pushed.

Log back into Jenkins and click the Random Quotes project link:

Click the Configure link:

Click Add post-build action, and click the Octopus Deploy: Create Release option.

Set the Project Name to Random Quotes:

Check the Deploy the release after it is created check box, set the Environment to Dev, and check the Show deployment progress checkbox. Then click Save:

Build and deploy the project

Click Build Now. The second build will commence. Click the #2 link to view the second build:

Click the Console Output link to view the build output:

The build logs are streamed to the browser. In a minute or so, the build will complete, and Octopus will perform a deployment using the new package to the Dev environment. You can confirm this by looking for the log message that says Deploy Random Quotes release 0.0.2 to Dev: Success.

We now have a complete CI/CD pipeline! Jenkins will watch for any changes committed to the Git repository, compile the code, run any tests, and then call Octopus to deploy the result.

Additional configuration

Now we will explore some of the more advanced features of Octopus that allow us to customize the deployment progression through environments, secure deployments to production environments, add deployment sign offs, view the audit logs, and add notifications.

Lifecycles

Our project currently uses the default lifecycle, which defines a progression through all the environments in the order they were created.

A custom lifecycle allows the progression of a deployment to be further refined, by defining only a subset of environments that can be deployed to, allowing some environments to be skipped entirely, or requiring that a minimum number of environments are successfully deployed to before moving onto the next environment.

Here we will create a custom lifecycle that makes deployments to the Dev environment optional. This means that initial deployments can be made to the Dev or Test environments, but a successful deployment must be made to the Test environment before it can be progressed to the Prod environment.

Skipping the Dev environment like this may be useful for promoting a release candidate build directly to the Test environment for product owners or testers to review.

Click the Library link, click the Lifecycles link, and click ADD LIFECYCLE:

Set the lifecycle name to Dev, Test, and Prod, and the description to Progression from the Dev to the Prod environments:

Phases are used to group environments that can accept a deployment. Simple lifecycles, such as the lifecycle we are creating, have a one-to-one relationship between phases and environments.

Click ADD PHASE:

Enter Dev as the phase name, and select the Optional phase option. This means that deployments can skip this phase and any environments defined in it, and deploy directly to the next phase.

Because we are mapping each environment to its own phase, the name of the phase matches the name of the environment:

Click ADD ENVIRONMENT:

Click the dropdown arrow, select the Dev environment, and click OK:

Repeat the process to add a new phase for the Test and Prod environments, leaving the default All must complete option selected:

Click SAVE:

Now, we need to switch the deployment project from the Default Lifecycle to the newly created lifecycle.

Click the Projects link, and click the Random Quotes project tile:

Click the Process link, and click CHANGE:

Select the Dev, Test, and Prod lifecycle. Notice the Dev environment is shown as optional.

Click SAVE:

Click CREATE RELEASE, and click SAVE to save the new release:

Because the Dev environment has been configured as optional, the initial release can be made to either the Dev or Test environments. We'll skip the Dev environment and deploy straight to Test.

Click DEPLOY TO..., and select the Test environment:

Click DEPLOY to deploy the application to the Test environment:

The deployment is then performed directly in the Test environment, skipping the Dev environment:

Opening http://localhost:9091/randomquotes-test displays the copy of the Random Quotes application deployed to the Test environment. Note the context path randomquotes-test is the templated value of the context path that we deployed the application to.

Also see the footer text that says running in Test. This is the result of the contents of the deployed-application.yml file being processed during deployment to define the current Spring Boot profile to be the name of the environment that the application was deployed into:

Approvals

It's a common business requirement to have testers or product owners manually verify that a particular build meets the requirements before a deployment can be considered successful.

Octopus supports this workflow through the use of manual intervention steps. We'll add a manual intervention step to the end of the deployment process, which requires a responsible party to verify the build meets the requirements.

Open the Random Quotes project, click the Process link, and click the ADD STEP button:

Search for the Manual Intervention Required step, and add it to the process:

Enter Deployment Sign Off for the Step Name:

Enter the following for the Instructions:

Open the application and confirm it meets all the requirements.

Because every build is automatically deployed to the Dev environment, it doesn't make sense to force someone to manually approve all those deployments. To accommodate this, we do not enable the manual intervention step for deployments to the Dev environment.

Expand the Environments section under the Conditions heading, select the Skip specific environments option, and select the Dev environment.

Click SAVE to save the step:

When this application is deployed to the Test or Prod environments, a prompt will be displayed requiring manual sign off. Click ASSIGN TO ME to assign the task to yourself:

Add a note in the provided text box, and click PROCEED to complete the deployment:

The deployment will then complete successfully:

Email notifications

Octopus has native support for sending email notifications as part of the deployment process. We will add a step to the deployment process to let people know when a release has been deployed to an environment.

To start, we need to configure an SMTP server to send our emails. For this guide, we'll use the free SMTP server provided by Google.

Click the Configuration link:

Click the SMTP link:

  • Enter smtp.gmail.com as the SMTP Host.
  • Enter 587 as the SMTP Port.
  • Enable the Use SSL/TLS option.
  • Enter your Gmail address as the From Address.
  • Enter your Gmail address and password in the credentials.

You will enable the Less secure apps option on your Google account for Octopus to send emails via the Google SMTP server.

Open the Random Quotes project, click the Process link, and click ADD STEP:

Search for the Send an Email step, and add it to the process:

Enter Random quotes deployment status for the Step Name:

Enter the email address to receive the notification in the To field:

Enter Random quotes deployment status as the Subject:

Enter the following as the Body:

Deployment to #{Octopus.Environment.Name}
#{each step in Octopus.Step}
StepName: #{step}
Status: #{step.Status.Code}
#{/each}

Here we use the #{Octopus.Environment.Name} variable provided by Octopus to add the name of the environment that was deployed to, and then loop over the status codes in the #{Octopus.Step} variable to return the status of each individual step.

The complete list of system variables can be found in the Octopus documentation.

We want to be notified of the status of this deployment regardless of whether the deployment succeeded or failed. Click the Run Conditions section to expand it.

Select the Always run option, which ensures the notification email is sent even when the deployment or the manual intervention fail:

Given every change to the source code will result in a deployment to the Dev environment, we do not want to generate reports for deployments to this environment.

Click the Environments section to expand it. Select the Skip specific environments option, and select the Dev environment to skip it.

This is the last piece of configuration for the step, so click SAVE to save the changes:

Deploy the project to the Test or Prod environments. When the deployment succeeds, the notification email will be sent:

Permissions

One of the strengths of Octopus is that it models environments as first-class entities. This means the security layer can apply rules granting access only to specific environments. We'll take advantage of this ability to model and secure environments to create two users, an internal deployer who can deploy to the Dev and Test environments, and a production deployer who can deploy to the Prod environment.

We start by creating the users. Click the Configuration link:

Click the Users link:

Click ADD USER:

Enter internaldeployer as the Username:

Enter Internal Deployer as the Display Name:

Enter the user's email address. We have used a dummy address of internaldeployer@example.org here:

Enter a password and confirm it. Then click SAVE to create the user:

Repeat the process for a user called productiondeployer. The summary for the productiondeployer user is shown below:

The newly created users are not assigned to any teams and have no permissions to do anything. To grant them permissions, we must first create two teams. The internal deployment team will grant access to deploy to the Dev and Test environments, while the production deployment team will grant access to deploy to the Prod environment.

Click the Configuration link:

Click the Teams link:

Click ADD TEAM:

Enter Internal Deployers for the New team name, and Grants access to perform a deployment to the internal environments for the Team description. Click SAVE to create the team:

We need to add the internaldeployer user to this team. Click ADD MEMBER:

Select the Internal Deployer user from the dropdown list, and click ADD:

The team does not grant any permissions yet. To add permissions click the USER ROLES tab, and click INCLUDE USER ROLE:

Select the Deployment creator role from the dropdown list. As the name suggests, this role allows a user to create a deployment, which results in the deployment process being executed.

Click DEFINE SCOPE:

We only want to allow the internal deployer to deploy to the internal environments. Select the Dev and Test environments, and click APPLY:

The permissions are then applied. We need a second permission to allow the internal deployer to view the projects dashboard. Click INCLUDE USER ROLE again:

Select the Project viewer role. This role does not need to be scoped, so click the APPLY button:

Here are the final set of roles applied to the team:

Repeat the process to create a team called Production Deployers that includes the productiondeployer user, and grants the Deployment creator role scoped to the Prod environment:

When we log in as the internaldeployer user, we see that the Random Quotes project dashboard shows DEPLOY... buttons for the Dev and Test environments. Any deployments in the production environment will be visible, but they cannot be created by this user:

When we log in as the productiondeployer user, we see that the Random Quotes project dashboard shows DEPLOY... buttons only for the Prod environment. Also note that the lifecycle rules still apply, and only successful deployments to the Test environment are available to be promoted to the Prod environment:

Audit Log

Important interactions in Octopus are tracked in the audit log. This is useful for teams that have security or legislative requirements to track the changes and deployments made to their infrastructure.

To view the audit log, click the Configuration link:

Click the Audit link:

A complete list of records are shown, with filtering available to help find specific events:

Conclusion

In this guide we ran through the process of building a complete CI/CD pipeline with:

  • Jenkins building and testing the source code and pushing the package to Octopus.
  • Octopus deploying the package to the Dev, Test, and Prod environments.
  • Email notifications generated when deployments succeed or fail.
  • Manual sign off for deployments to the Test and Prod environments.
  • Users with limited access to create releases in a subset of environments.

This is a solid starting point for any development team, but Octopus offers so much more! Below are more resources you can access to learn about the advanced functionality provided by Octopus:

Need support? We're here to help.